Non-Maxwell–Boltzmann dependence of channel carrier concentration in a quasi one dimensional charge density wave channel in the ballistic transport regime

Author:

Biswas SaumyaORCID

Abstract

Abstract With the aid of a coherent transport model utilizing the non-equilibrium Green function approach, a three terminal device with metallic gate, source and drain and a quasi one dimensional charge density wave (CDW) channel is simulated focussing on the transistor behaviour brought about by a sweep of the channel potential or equivalently the chemical potential in the channel. The channel is strongly insulating only at half-filling and moving to lower and higher carrier concentrations both incur a mean field phase transition to a conducting state. With the aid of conductance calculations for a pinned CDW condensate, we present calculations for the sub-threshold slope in terms of the hopping parameter or equivalently the width of the tight-binding chain. The effects of source to drain bias and length are examined. The conductance profiles are analyed in relation to transmission profiles. The observed CDW profiles are explained in terms of filling and Fermi surface nesting. Boundary conditions, gap equations and response functions are shown to reveal the commensurability conditions and size of the transport gap. The channel carrier concentration is modulated in an athermal (non-Maxwellian–Boltzmann) fashion, thereby making it an interesting prospect for steep transistors.

Funder

NSF

University of California Riverside

National Science Foundation

Semiconductor Research Corporation

Nanoelectronic Research Initiative

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3