Competitive effect between roughness and mask pattern on charging phenomena during plasma etching

Author:

ZHANG Peng,DAMBIRE Ruvarashe F

Abstract

Abstract In the plasma etching process, the edge roughness and mask pattern usually play a significant role in the deformation of holes under the influence of the charging effect. The competitive effect between these two factors has been investigated, focusing on the surface charging in a hexagonal array, with various values of roughness parameters (amplitude (A) and wavelength (W)) and distances between holes (L). A series of classical particle dynamic simulations of surface charging, surface etching and profile evolution were used to investigate the effect of roughness and pattern on charging. This study showed that various roughness and patterns (represented by different values of L) can significantly influence surface distributions of the electric-field (E-field) and the etching rates on the mask surface. The simulations also showed that (1) the shape of the pattern array influences the mask hole profile during the etching process, i.e. a hexagonal array pattern tends to deform the profile of a circular mask hole into a hexagonal hole; (2) pattern roughness is aggravated during the etching process. These factors were found to be significant only at a small feature pitch and may be ignored at a large feature pitch. Possible mechanisms of these results during the etching process are discussed. This work sheds light on the ways to maintain pattern integrity and further improve the quality of the pattern transfer onto the substrate.

Funder

2017 Youth Research Talent Supporting Program, China

the start-up research funding of Yangtze Normal University, China

the Youth Project of Science and Technology Research Program of Chongqing Education Commission of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3