Micro-impulse and plasma plume produced by irradiating aluminum target with nanosecond laser pulses in double-pulse scheme

Author:

YU ChenghaoORCID,YE Jifei,ZHOU Weijing,CHANG Hao,GUO Wei

Abstract

Abstract The micro-impulse generated by ablating an aluminum target in double-pulse laser bursts with different interpulse delays was investigated using a torsion pendulum. The plasma plume was simultaneously visualized using high-speed photography to analyze the coupling mechanism of the ablation impulse. The experiment was carried out using a pulsed laser with a pulse width of 8 ns and a wavelength of 1064 nm. The experimental results show that an impulse with an interpulse delay of 60 ns is roughly 60% higher than that with no delay between the two pulses, when the energy of both laser pulses is 50 mJ. Therefore, double-pulse schemes could enhance the ablation impulse under certain conditions. This is because the ablation of the first laser pulse changes the optical properties of the aluminum target surface, increasing the absorptivity. However, the ablation impulse is reduced with a time delay of 20 ns when the energy of both laser pulses is 100 mJ or 150 mJ. It can be concluded that the plasma produced by ablating the aluminum with the first pulse shields the second laser pulse. To summarize, the experimental results show that different delay times in a double-pulse scheme have a significant effect on the ablation impulse. The study provides a reference for the optimization of the parameters when laser ablation propulsion with a double-pulse scheme is applied in the fields of space debris removal, laser ablation thrusters, and so on.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3