Plasma diagnosis of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition

Author:

WANG Minglei,ZHANG Lin,LU Wenqi,LIN Guoqiang

Abstract

Abstract Filtered cathodic vacuum arc (FCVA) deposition is regarded as an important technique for the synthesis of tetrahedral amorphous carbon (ta-C) films due to its high ionization rate, high deposition rate and effective filtration of macroparticles. Probing the plasma characteristics of arc discharge contributes to understanding the deposition mechanism of ta-C films on a microscopic level. This work focuses on the plasma diagnosis of an FCVA discharge using a Langmuir dual-probe system with a discrete Fourier transform smoothing method. During the ta-C film deposition, the arc current of graphite cathodes and deposition pressure vary from 30 to 90 A and from 0.3 to 0.9 Pa, respectively. The plasma density increases with arc current but decreases with pressure. The carbon plasma density generated by the arc discharge is around the order of 1010 cm−3. The electron temperature varies in the range of 2‒3.5 eV. As the number of cathodic arc sources and the current of the focused magnetic coil increase, the plasma density increases. The ratio of the intensity of the D-Raman peak and G-Raman peak (I D/I G) of the ta-C films increases with increasing plasma density, resulting in a decrease in film hardness. It is indicated that the mechanical properties of ta-C films depend not only on the ion energy but also on the carbon plasma density.

Funder

National Key Research and Development Program of China

the Natural Science Foundation of the Anhui Higher Education in Institutions of China

Science and Technology Program of Wuhu

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3