Author:
Peng Yongkang,Chen Xiaoyue,Deng Yeqiang,Lei Lan,Haoyu Zhan,Pei Xuekai,Chen Jiahao,Yuan Yukuan,Wen Xishan
Abstract
Abstract
The traditional corona discharge fluid model considers only electrons, positive and negative ions, and the discharge parameters are determined using the simplified weighting method involving the partial pressure ratio. Atmospheric pressure discharge plasma in humid air involves three main neutral gas molecule types: N2, O2, and H2O(g). However, in these conditions, the discharge process involves many types of particles and chemical reactions, and the charge and substance transfer processes are complex. At present, the databases of plasma chemical reaction equations are still expanding based on scholarly research. In this study, we examined the key particles and chemical reactions that substantially influence plasma characteristics. In summarizing the chemical reaction model for the discharge process of N2–O2–H2O(g) mixed gases, 65 particle types and 673 chemical reactions were investigated. On this basis, a global model of atmospheric pressure humid air discharge plasma was developed, with a focus on the variation of charged particles densities and chemical reaction rates with time under the excitation of a 0–200 Td pulsed electric field. Particles with a density greater than 1% of the electron density were classified as key particles. For such particles, the top ranking generation or consumption reactions (i.e., where the sum of their rates was greater than 95% of the total rate of the generation or consumption reactions) were classified as key chemical reactions On the basis of the key particles and reactions identified, a simplified global model was derived. A comparison of the global model with the simplified global model in terms of the model parameters, particle densities, reaction rates (with time), and calculation efficiencies demonstrated that both models can adequately identify the key particles and chemical reactions reflecting the chemical process of atmospheric pressure discharge plasma in humid air. Thus, by analyzing the key particles and chemical reaction pathways, the charge and substance transfer mechanism of atmospheric pressure pulse discharge plasma in humid air was revealed, and the mechanism underlying water vapor molecules’ influence on atmospheric pressure air discharge was elucidated.
Funder
National Natural Science Foundation of China
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献