Mapping chemical reaction pathways in discharge plasmas: An approach based on force-directed layout

Author:

Zhan Haoyu12ORCID,Chen Xiaoyue12ORCID,Zhang Yanze12ORCID,Qin Pengcheng12ORCID,Luo Qinyi12,Lan Lei12

Affiliation:

1. School of Electrical Engineering and Automation, Wuhan University 1 , Wuhan, China

2. State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University 2 , Wuhan 430072, China

Abstract

In the exploration of humid air discharges at atmospheric pressure using chemical kinetics, the mapping of chemical reaction pathways emerges as a crucial instrument for deciphering the underlying mechanisms of the reaction system. In this study, we employed a force-directed layout method to create diagrams of chemical reaction pathways based on simulation results from a global model of humid air discharges at atmospheric pressure. This innovative approach aids in addressing the challenges traditionally associated with mapping these pathways, notably the difficulty in balancing intuitiveness with the precise representation of physical data. In our method, the mass of each node in the diagram is determined by the species density, and the natural length between nodes is defined according to reaction rates, with the forces acting upon the nodes dictated by the variance between the actual distance and this natural length. The final arrangement of the nodes is established upon reaching a stable equilibrium after undergoing damped motion in response to these forces. This methodology not only provides a tangible and intuitive visualization of the complex interactions within discharge plasmas but also enables a detailed sensitivity analysis to assess the significance of various reactions.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3