Torrefaction of almond shell as a renewable reinforcing agent for plastics: techno-economic analyses and comparison to bioethanol process

Author:

Liu DupengORCID,Baral Nawa RajORCID,Liang Ling,Scown Corinne DORCID,Sun NingORCID

Abstract

Abstract In 2016, the US state of California alone produced nearly 3.5 billion kilograms of almonds, accounting for approximately 84% of the world’s almond production. This generated about 2.58 million metric tons (MTs) of almond residues. Almond shells are currently either burned to generate power or disposed of in landfill. Valorizing almond shells and hulls provides an opportunity to replace petroleum-derived products and divert organic material from landfill. Here we demonstrate a detailed techno-economic analysis (TEA) of an almond shell torrefaction process capable of utilizing the 520 000 MTs of almond shells produced annually in California. Our process also includes preprocessing the torrefied biomass to exploit it as a reinforcing agent for plastics. We further compared the revenue generated from the torrefied biomass and bioethanol derived from the same quantity of almond shells. We considered three different torrefaction facility scales to evaluate trade-offs between economies of scale at the facility and trucking costs to deliver almond shells. A facility that takes in 200 000 MT yr–1 of almond shells results in lower per-unit-output basis capital and operating cost relative to other smaller-scale torrefaction facilities, including 10 000 MT yr–1 and 50 000 MT yr–1, considered for analysis in this study. The large-sale facility results in a minimum selling price (MSP) of the torrefied biomass of $311.4 MT–1. An analogous TEA on converting almond residues into bioethanol is also investigated. The MSP of almond shell derived ethanol ($1.71 kg−1) is higher than that of corn ($0.48 kg−1) or cellulosic biomass ($0.88 kg−1) derived ethanol. Compared with the bioethanol route, the torrefied almond shells result in three times more revenue if utilized as a reinforcing agent for plastics.

Funder

Almond Board of California

U.S. Department of Energy

Publisher

IOP Publishing

Subject

General Engineering,Energy Engineering and Power Technology

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3