Removing The Acid Orange 12 Azo Dye from Aqueous Solution Using Sodium Hypochlorite, A Kinetic and Thermodynamic Study

Author:

Hameed A. B.,Dekhyl A. B.,Sh. Alabdraba W. M.

Abstract

Abstract This study investigated the feasibility of using sodium hypochlorite as an advanced oxidation process to remove Acid Orange 12 azo dye from wastewater. For this purpose, batch reactor experiments were done. Several variables to address the efficiency of using this process were considered. These variables are initial pH (5, 7, and 9), the concentration of hypochlorite (50 – 250 mg/l), temperature (20-50) degrees Celsius, and time of electrolysis (1-75) min. also investigate the effects of UV on the process was done. Experimental results showed that the color removal efficiency using NaOCl with UV is more effective than NaOCl alone. The highest removal efficiency was obtained by increasing the concentration of NaOCl from (50-250mg/l) at PH=5. When the solution temperature was increased from (20-50) °C, the removal efficiency increased, and at the same time, the time required was reduced from (20-5) minutes to obtain the highest removal efficiency. The kinetic study also showed that the oxidation process follows a second-order reaction. The thermodynamic functions indicate that the response is spontaneous, endothermic, and increases randomness.

Publisher

IOP Publishing

Subject

General Engineering

Reference38 articles.

1. Study in fact of drinking water in some regions of Baghdad city;Muhammed;Iraq journal of market research and consumer protection,2010

2. removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies;Attia;Dyes and Pig.,2008

3. Decolorization of textile dyes by white-rot fungi phanerocheate chrysosporium and Pleurotus Sajor- caju;Kumaran;Journal of applied technology in environmental sanitation,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3