Optical performance and chemical stability evaluation of new era phase change material: Activated by hybrid nanoparticle

Author:

Pandey AK,Kalidasan B,Rajamony Reji Kumar,George Mathew

Abstract

Abstract Inorganic salt hydrate phase change materials (PCMs) are ahead of organic PCMs in terms of energy storage ability and safety as they are non-flammable. However the major hindrance with inorganic PCM are degree of supercooling and low thermal conductivity though better than organic PCM. The common technique to enhance the thermal conductivity is via dispersion of metal and carbon nanoparticle. Though they enhance the thermal conductivity of the nanocomposite, with continuous operation the nanoparticle agglomerate and settles down owing to their density. Henceforth, in the current research work we conduct an experimental investigation to enhance the optical and thermal performance of commercialised inorganic salt hydrate PCM using metal-carbon hybrid nanoparticle. We disperse graphene silver nanoparticle at different weight ratio adopting a two-step method followed by probe sonication to ensure uniform dispersion. We achieve a highly stable nanocomposite with 584% increase in optical absorbance of electromagnetic waves and 86% decrease in transmittance. Thermal management of electronic gadgets has evolved to be a major consideration of research as overuse of gadgets lead to rapid temperature rise and is in need of passive cooling system. Henceforth the newly developed nanocomposite phase change materials (PCMs) not only acts as thermal batteries but can also be opted as energy materials for thermal regulation and heat mitigation.

Publisher

IOP Publishing

Subject

General Medicine

Reference9 articles.

1. Nano additive enhanced salt hydrate phase change materials for thermal energy storage;Kalidasan;International Materials Reviews,2022

2. Energizing organic phase change materials using silver nanoparticles for thermal energy storage;Kalidasan;Journal of Energy Storage,2023

3. Experimental Investigation of Graphene Nanoplatelets Enhanced Low Temperature Ternary Eutectic Salt Hydrate Phase Change Material;Kalidasan;Energies,2023

4. Tetrapods based Engineering of Organic Phase Change Material for Thermal Energy Storage;Balasubramanian;Chemical Engineering Journal,2023

5. Improved thermal conductivity and stability of Na2SO4⋅10H2O PCMs system by incorporation of Al/C hybrid nanoparticles;Liu;Journal of Materials Research and Technology,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3