Experimental Investigation of Graphene Nanoplatelets Enhanced Low Temperature Ternary Eutectic Salt Hydrate Phase Change Material

Author:

Kalidasan B.1,Pandey A. K.12,Rahman Saidur1,Sharma Kamal3,Tyagi V. V.4

Affiliation:

1. Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Petaling Jaya 47500, Malaysia

2. Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Services, Saveetha University, Chennai 602105, India

3. Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura 281406, India

4. School of Energy Management, Shri Mata Vaishno Devi University, Katra 182320, India

Abstract

A sustainable approach to ensuring the thermal regulation of space is reliable with phase change materials (PCMs) operating at 15–25 °C. Henceforth, there is a need of a search of binary and ternary eutectic PCMs operating at desirable phase transition temperatures of 15–25 °C, high energy storage enthalpy (180–220 J/g), improved thermal conductivity and better absorptivity of solar energy. In this current research, we developed a ternary eutectic inorganic salt hydrate PCM intended for a low-temperature thermal regulation system. Based on the eutectic melting point theory, the phase transition temperature and proportion of sodium carbonate decahydrate (SCD), sodium phosphate dibasic dodecahydrate (SPDD) and sodium sulphate decahydrate (SSD) were determined. As per the calculated proportion, ternary eutectic PCM was experimentally prepared. Furthermore, to enhance the thermal property, graphene nanoplatelets (GNP) were dispersed at weight concentrations of 0.4%, 0.7% and 1.0%. The prepared nanoparticle-dispersed PCMs were characterized using an optical microscope, Fourier transform infrared (FT-IR) spectroscopy and a thermal conductivity meter, and a differential scanning calorimeter (DSC) was used to evaluate the morphology, chemical stability and thermal properties. The results showed increases in thermal conductivity and optical absorbance by 71.5% and 106.5%, respectively, with GNP at 1.0% weight concentration. Similarly, the degree of supercooling and transmissibility was reduced by 43.5% and 76.2% correspondingly. The prepared composite PCM is expected to contribute towards cooling, with an intention to contribute towards sustainable development.

Funder

Sunway University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3