Enhancement of Microhardness and Tribological Properties of Recycled AA 6063 Using Energy-Efficient and Environment-Friendly Friction Stir Processing

Author:

Teo G S,Liew K W,Kok C K

Abstract

Abstract In this study, the surface microhardness, friction and wear performance of recycled aluminium alloy 6063 were improved via an energy-efficient surface engineering technique known as friction stir processing. Different tool rotational speeds of 1200 rpm, 1400 rpm, 1600 rpm, 1800 rpm and 2000 rpm with a fixed feed rate of 30 mm/min were used to process the recycled aluminium alloy 6063. The effects of rotational speed on the microstructure, surface microhardness and tribological performance of the samples were analyzed. The results show that the samples produced at a stirring speed of 1200 rpm achieved the greatest enhancement of 25 % in surface microhardness, 37 % in wear resistance and 33 % reduction in friction coefficient. This has significant implications for environmental sustainability as a relatively low rotational speed, hence a low energy input, is sufficient to enhance the surface properties of recycled aluminium alloy 6063. The benefits of superior tribological properties of recycled aluminium alloy afforded by such an energy-efficient surface engineering method include reduced exploitation of new resources, reduced carbon footprint, and enhanced product sustainability and durability.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3