Author:
Yulihastin E,Suaydhi ,Satyawardhana H,Ihsan C N
Abstract
Abstract
Local seas play a significant role in causing anomalously wet of the dry season over the Indonesia Maritime Continent (10°S-8°N, 95-145°E). As a result, modeling the anomalously-wet dry season over Indonesia lead challenges due to several subregional processes over local seas could not be captured well in the regional climate model. This study explores subregions processes of sea-air interaction over the western Maritime Continent by simulating diurnal precipitation using Cubic Conformal Atmospheric Model (CCAM) with a spatial resolution of 32 km during the anomalously-wet dry season periods during May-to-September (MJJAS) 2020. The simulated results were confirmed by precipitation data from Tropical Rainfall Measuring Mission (TRMM) satellite observation. The results show anomalous circulation patterns induce anomalous regional precipitation over western MC is induced by anomalous circulation patterns over four keys of seas subregion, i.e., Indian Ocean, South China Sea, southern Sumatra (Lampung and Sunda strait), and the Java Sea. Furthermore, the anomalous circulation also modulates anomalous local circulation and enhances surface water vapor by an increased surface latent heat flux.