Why Precipitation Is Mostly Concentrated over Islands in the Maritime Continent

Author:

Qian Jian-Hua1

Affiliation:

1. International Research Institute for Climate and Society (IRI), Columbia University, Palisades, New York

Abstract

Abstract High-resolution observations and regional climate model simulations reveal that precipitation over the Maritime Continent is mostly concentrated over islands. Analysis of the diurnal cycles of precipitation and winds indicates that this is predominantly caused by sea-breeze convergence over islands, reinforced by mountain–valley winds and further amplified by the cumulus merger processes. Comparison of a regional climate model control simulation to a flat-island run and an all-ocean run demonstrates that the underrepresentation of islands and terrain in the Maritime Continent weakens the atmospheric disturbance associated with the diurnal cycle, and hence underestimates precipitation. The implication of these regional modeling results is that systematic errors in coarse-resolution global circulation models probably result from insufficient representation of land–sea breezes associated with the complex topography in the Maritime Continent. It is found that precipitation in the Maritime Continent, simulated by a global model, is indeed smaller than observed. The simulated upper-atmospheric velocity potential, which represents large-scale tropospheric heating, was substantially displaced eastward compared to observations. Possible approaches toward solving this problem are suggested.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference55 articles.

1. Influence of the synoptic-scale flow on sea breezes observed during CaPE.;Atkins;Mon. Wea. Rev.,1997

2. Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection.;Carbone;Mon. Wea. Rev.,2000

3. Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition.;Chang;J. Climate,2005

4. Dickinson, R. E., A.Henderson-Sellers, and P. J.Kennedy, 1993: Biosphere Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

5. Validation of satellite rainfall products over East Africa’s complex topography.;Dinku;Int. J. Remote Sens.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3