Auditing carbon reduction potential of green concrete using life cycle assessment methodology

Author:

Bhagat G V,Savoikar P P

Abstract

Abstract The production of concrete in its traditional form have reported a notable impact on the environment in terms of resource depletion and the carbon footprint it generates in the entire life cycle. To reduce these impacts, the ‘Green Concrete’ concept is at focal point of research in the construction industry. The advantage of resource conservation of ‘Green concrete’s is evident from usage of industrial by-products like fly ash, blast furnace slag, silica fume etc. as alternative binder materials and recycled wastes like construction and demolished waste and other industrial wastes as aggregate fillers. However, the quantification of environmental impact of such concretes in terms of most crucial emissions, like CO2 emissions in an objective way would confirm the eco-friendly face of ‘Green concrete’. Life cycle assessment (LCA) is one of the most trusted tools to arrive at carbon score of such green concrete. This paper presents a step-by-step procedure of estimation of carbon footprint of a green concrete considering all possible phases of the life cycle of concrete including the post use phase. The conclusive findings from available literature for different types of ‘Green concrete’ are also presented to reflect the environmental advantage/disadvantage. The effect of system boundary, carbon uptake and allocation of impact are also discussed with reference to the results available in the literature.

Publisher

IOP Publishing

Subject

General Engineering

Reference76 articles.

1. Cradle-to-gate environmental impacts of the concrete industry in South Africa;Muigai;Journal of the South African Institution of Civil Engineering,2013

2. Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates;Braga;Journal of Cleaner Production,2017

3. A life-cycle approach to environmental, mechanical, and durability properties of green concrete mixes with rice husk ash;Gursel;Journal of Cleaner Production,2016

4. Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system;Kim;Renewable and Sustainable Energy Reviews,2013

5. Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash;Kurda;Resources Conservation and Recycling,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3