The Embodied Life Cycle Global Warming Potential of Off-Site Prefabricated Concrete Products: Precast Concrete and Concrete Pile Production in Korea

Author:

Kim Hyunsik1ORCID,Kim Jeonghwan1ORCID,Roh Seungjun2ORCID

Affiliation:

1. Department of Civil Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea

2. School of Architecture, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

Abstract

The impacts of concrete on global warming through its use in structures such as buildings and infrastructure must be identified and better understood, as concrete is known to have a very high global warming potential (GWP). However, in contrast with ordinary on-site constructed reinforced concrete, GWPs of off-site factory-made prefabricated concrete products such as precast concrete (PC) and concrete piles that are widely used in construction are rarely evaluated, owing to the complicated manufacturing processes that make the determination of greenhouse gas emission difficult. In this study, the embodied life cycle GWPs were derived for PC and pretensioned spun high-strength concrete (PHC) piles to enable precise assessment of the global warming impact of concrete structures and the concrete industry of Korea. The determined embodied GWPs of PC and PHC piles were 1.77 × 10−1 kg CO2 eq/kg and 1.87 × 10−1 kg CO2 eq/kg, respectively. As a result, both prefabricated concrete products were determined to have high GWP due to input materials, such as cement rebars, while the GWP contributions of the off-site prefabrication processes were low. Moreover, the embodied GWPs of both prefabricated concrete products were significantly higher than those of ordinary reinforced concrete, and the impact of both products on global warming was found to be approximately 4% of the impact of the Korean concrete industry. This indicates that it is necessary to consider the impacts of the PHC pile and PC industries when assessing the impacts of greenhouse gas occurring in the concrete industry at the national level. It is expected that these findings will be widely used to obtain a more accurate assessment of the impact of concrete structures and industry on global warming.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference47 articles.

1. IPCC (2018). An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

2. European Commission (2019). Communication from the Commission: The European Green Deal, European Union.

3. International Energy Agency (IEA) (2021). An Energy Sector Road Map to Carbon Neutrality in China, IEA.

4. US Department of State (2021). The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050.

5. Government of the Republic of Korea (2020). 2050 Carbon Neutral Strategy of the Republic of Korea: Towards a Sustainable and Green Society.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3