Lithium-Ion Battery Thermal Runaway Electro-Thermal Triggering Method and Toxicity Analysis

Author:

Xie H J,Sun J,Li J G,Zhou T,Wei S P,Yi Z H

Abstract

Abstract In high temperature condition, lithium-ion batteries have a greater risk of thermal runaway. Lithium-ion batteries may be exposed to smoke, combustion, or even explosion, which poses a greater threat to humans and the environment. In this paper, the electro-thermal triggering method is used to induce thermal runaway of the lithium-ion batteries. The most representative ternary polymer lithium-ion battery (NMC), lithium cobalt oxide battery (LCO), lithium iron phosphate battery (LFP) in the market were selected as experimental samples, all using 18650 batteries, and then the state of charge of battery samples were adjusted to 0%, 30%, 50%, 100%. The thermal runaway reaction phenomenon of lithium-ion batteries and the surface temperature of the batteries were recorded. The positive electrode samples of the batteries were characterized by X-ray diffraction and electron microscopy, and the thermal runaway reaction products were analyzed. The results show that with the increase of the state of charge, the thermal runaway reactions of the batteries are more severe. Thermal runaway reaction products contain a large amount of toxic substances, and prevention and protection are necessary.

Publisher

IOP Publishing

Subject

General Engineering

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3