Author:
Novikova G,Ershova I,Prosviryakova M,Mikhailova O,Storchevoy V,Larionov G,Samarin G,Kuleshova L,Poruchikov D,Andreev L
Abstract
Abstract
The study is aimed at the effect substantiation of voluminous heating of the cattle frozen colostrum in the two-resonator installation. The methodology is based on the theory of the electromagnetic field, the laws of thermodynamics and the results of physical modeling. The colostrum dielectric parameters were analyzed in the temperature range from -12 °C to +40 °C. The theoretical studies were carried out for changes finding out in the absorption coefficient of the electromagnetic field and the penetration depth of the electromagnetic waves 12.24 cm long during defrosting/heating of the cow colostrum with the fat content of 6.4%. It is found that the penetration depth of the electromagnetic field into the frozen raw material at negative temperatures range (0.2-1.0 cm) is less than that at the colostrum positive temperatures (1.0-2.17 cm). With such significant difference in the dielectric characteristics of the frozen and thawed colostrum and in their penetration depths of the ultra high frequency electromagnetic field, the rate of their heating is considerably different. The developed continuous-flow ultra high frequency electromagnetic generator contains two voluminous resonators. They provide the colostrum being in different physical states with different doses of the ultra high frequency electromagnetic field exposure.