The Effect of Graphene Addition on the Microstructure and Properties of Graphene/Copper Composites for Sustainable Energy Materials

Author:

Jamadon Nashrah Hani,Rasid Nurul Izzati Muhamad,Ahmad Mohd Azwan,Lutfi Maisarah,Adzila Sharifah,Jamal Nur Ayuni,Muhamad Norhamidi

Abstract

Abstract Graphene is a single thin layer (mono layer) of a hexagon-bound carbon atom and is an allotropic carbon in the form of a hybrid atomic plane, with a molecular bond length of 0.142 nm. Graphene is the thinnest and lightest material with 0.77 mg square meters, which exhibited excellent electricity and heat conductor. However, the perfect uniform microstructure, strength and optimum thermal properties of copper-graphene composites cannot be achieved because the amount of graphene does not reach the optimum level. In order to solve this problem, copper-graphene composites were produced by metal injection molding method (MIM) with various percentage of graphene, specifically 0.5%, 1.0% and 1.5% in the composite, to compare the physical and mechanical properties of these samples. MIM process involves the preparation of feed materials, pre-mixing process, mixing process, mold injection process, binding process and sintering processes. Feeding materials were used are copper and graphene, which have the powder loading of 62% with a mix of binder comprising 73% polyethylene glycol (PEG), 25% polymethyl methacrylate (PMMA), and 2% stearic acid (SA). Densification and tensile test were conducted to determine the mechanical properties. Scanning electron microstructure (SEM) was performed to obtain the microstructure of the composites. From the research, the result revealed that the 0.5% graphene content had the optimum parameter, which the hardness and tensile stress values were at 94.2 HRL and 205.22 MPa.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3