In silico studies of benzimidazole derivatives as sustainable inhibitors against Methicillin-resistant Staphylococcus aureus

Author:

Ogunnupebi T A,Oduselu G O,Elebiju O F,Ajani O O,Adebiyi E

Abstract

Abstract Antimicrobial resistance is becoming more rampant in our world today, and different measures are being taken to combat this challenge. Benzimidazoles are classified as heterocyclic compounds with notable pharmacological properties. As a result, benzimidazole has been combined with other compounds that have remarkable actions to create a more potent molecule. Exploring these substances to combat antibacterial resistance would therefore aid in achieving good health and wellbeing and promote sustainable development. Predicting the effectiveness of the compounds before manufacturing and clinical testing has made drug design easy. This study employs in silico methods like molecular docking to investigate alternate antibacterial agents from a library of benzimidazole derivatives. A library of compounds with a benzimidazole template was screened against the three-dimensional (3D) structure of peptidoglycan transpeptidase (PPB2A) of Staphylococcus aureus. Two binding sites were identified in the protein: the main site and the allosteric site. Molecular docking was done on the main and allosteric sites to obtain free binding energy ranging from -7.3 to -5.8 and -4.9 to -4.5 kcal/mol, respectively. The predictive Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) experiments were done on the compounds to ascertain their safety. The results were compared to those of known antibiotics, and the compounds performed effectively. The benzimidazole derivative can be adopted as a prospective antibacterial agent with an alternative pathway for combating resistance issues and enhancing the quality of health and well-being globally.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3