Abstract
Abstract
Background
Antimicrobial resistance is swiftly increasing all over the world. In Africa, it manifests more in pathogenic bacteria in form of antibiotic resistance (ABR). On this continent, bacterial contamination of commonly used herbal medicine (HM) is on the increase, but information about antimicrobial resistance in these contaminants is limited due to fragmented studies. Here, we analyzed research that characterized ABR in pathogenic bacteria isolated from HM in Africa since 2000; to generate a comprehensive understanding of the drug-resistant bacterial contamination burden in this region.
Methods
The study was conducted according to standards of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). We searched for articles from 12 databases. These were: PubMed, Science Direct, Scifinder scholar, Google scholar, HerbMed, Medline, EMBASE, Cochrane Library, International Pharmaceutical Abstracts, Commonwealth Agricultural Bureau Abstracts, African Journal Online, and Biological Abstracts. Prevalence and ABR traits of bacterial isolates, Cochran’s Q test, and the I2 statistic for heterogeneity were evaluated using MedCalcs software. A random-effects model was used to determine the pooled prevalence of ABR traits. The potential sources of heterogeneity were examined through sensitivity analysis, subgroup analysis, and meta-regression at a 95% level of significance.
Findings
Eighteen studies met our inclusion criteria. The pooled prevalence of bacterial resistance to at least one conventional drug was 86.51% (95% CI = 61.247–99.357%). The studies were highly heterogeneous (I2 = 99.17%; p < 0.0001), with no evidence of publication bias. The most prevalent multidrug-resistant species was Escherichia coli (24.0%). The most highly resisted drug was Ceftazidime with a pooled prevalence of 95.10% (95% CI = 78.51–99.87%), while the drug-class was 3rd generation cephalosporins; 91.64% (95% CI = 78.64–96.73%). None of the eligible studies tested isolates for Carbapenem resistance. Extended Spectrum β-lactamase genes were detected in 89 (37.2%) isolates, mostly Salmonella spp., Proteus vulgaris, and K. pneumonia. Resistance plasmids were found in 6 (5.8%) isolates; the heaviest plasmid weighed 23,130 Kilobases, and Proteus vulgaris harbored the majority (n = 5; 83.3%).
Conclusions
Herbal medicines in Africa harbor bacterial contaminants which are highly resistant to conventional medicines. This points to a potential treatment failure when these contaminants are involved in diseases causation. More research on this subject is recommended, to fill the evidence gaps and support the formation of collaborative quality control mechanisms for the herbal medicine industry in Africa.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference89 articles.
1. World Health Organization (WHO). Antimicrobial resistance: global report on surveillance. World Health Organization; 2014. Available from: https://apps.who.int/iris/bitstream/handle/10665/112647/WHO_HSE_PED_AIP_?sequence=1
2. Gulen TA, Guner R, Celikbilek N, Keske S, Tasyaran M. Clinical importance and cost of bacteremia caused by nosocomial multidrug-resistant Acinetobacter baumannii. Int J Infect Dis. 2015;38:32–5.
3. World Health Organization (WHO). Worldwide country situation analysis: response to antimicrobial resistance. 2015. Available from: https://apps.who.int/iris/bitstream/10665/163468/1/9789241564946_eng.pdf
4. Jasovský D, Littmann J, Zorzet A, Cars O. Antimicrobial resistance—a threat to the world’s sustainable development. Ups J Med Sci. 2016;121(3):159–64. https://doi.org/10.1080/03009734.2016.1195900.
5. Mpaire Y, Wamala S, Uganda National Academy of Sciences (UNAS). Antibiotic Resistance in Uganda: Situation Analysis and Recommendations. Uganda Natl Acad Sci Kampala, Uganda. 2015; Available from: https://www.cddep.org/wp-content/uploads/2017/06/uganda_antibiotic_resistance_situation_reportgarp_uganda_0-1.pdf
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献