Accelerated stability study of Orthosiphon stamineus standardised ethanolic extract and its solid dispersion

Author:

Saidan N H,Kaus NHM,Aisha A,Hamil MSR,Ismail Z

Abstract

Abstract The objective of the present study is to develop accelerated stability of Orthosiphon stamineus standardised ethanolic extract (SEE) and its solid dispersion (ESD). The stability study of SEE and ESD has been performed using high-performance liquid chromatography (HPLC) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analyses. The spectroscopic datasets of ESD were applied to the principal component analysis (PCA) to extract the maximum information of the ATR-FTIR spectra. SEE and ESD were stored at three different temperatures with two different humidity conditions (30 °C/75% RH, 40 °C/75% RH and 60 °C/85% RH) for six months. Overall, the degradation of marker compounds; rosmarinic acid (RA), 3’-hydroxy-5, 6, 7, 4’-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) at high temperature (60 °C/85% RH) was higher compared to low temperature (30 °C/75% RH) for both samples. Moreover, the degradation of RA, TMF, SIN and EUP in ESD was slower compared to SEE. The deterioration of marker compounds for both samples followed the first-order reaction kinetics. The shelf life of SEE and ESD is based on the estimated shelf life RA, TMF, SIN, and EUP present in the samples. The shelf life of RA, TMF, SIN, and EUP in ESD were significantly enhanced (p < 0.001) compared to the same markers in SEE with EUP was showing the highest shelf life (15 months), while RA showed the lowest shelf life (7 months) when stored at the temperature below 30 °C. The shelf life of all marker compounds in SEE was less than two months when stored at the same temperature (below 30 °C). Based on ATR-FTIR fingerprinting datasets analysed with PCA, ESD kept at 30 °C/75% RH were still preserved of its chemical properties, which indicates that low temperature is better to keep the formulation.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3