Preliminary Study of the Potential Graphene Oxide as Radioactive Clinical Wastewater Adsorbability in Nuclear Medicine

Author:

Abdul Razab Mohammad Khairul Azhar,Manso Mohd Syahir,Noor An’amt Mohamed,Rozi Suhanis Mohd,Abd Latif Nur Fatin Fariha,Nizam Jaafar Khairul,Jamaludin Farakhdina

Abstract

Abstract This paper reports the ability of graphene oxide (GO) as a radionuclide adsorbent material for an alternative approach in nuclear medicine radioactive waste management. Notable physicochemical properties of GO mainly consist of oxygen-containing functional groups on its basal plane and edges site in the form of epoxy, hydroxyl, and carboxyl groups, making it a promising candidate for radionuclide extraction material from aqueous solution. Herein, GO was synthesised via a simplified Hummers method. The radioactive clinical waste, which is urine, was collected right after the scanning procedure and mixed with GO in various concentrations: 1 mg/ml, 1.5 mg/ml, 2 mg/ml, 2.5 mg/ml, and 3 mg/ml. The mixture was then filtered using micropore filter paper, leaving sediments on the filter paper and wastewater residues. The radioactivity of sediment and water residue was determined by using a well counter after 3, 6, 9, and 12 hours of filtration process. The activities of the sediment and water residues were found to be decreased with increasing GO concentrations. The FESEM image revealed high agglomeration structure when the sample was treated with GO of 3 mg/ml concentration. Further analysis via EDX showed the presence of other elements in the urine, which led to its attraction to the GO-layered sheets. This analysis also confirmed the presence of oxygen-functioning group in GO that facilitated the agglomeration process and solidified the radionuclide waste.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3