In Vitro Bioaccessibility Assessment as a Tool to Predict the Toxicity of Bioremediation Products

Author:

Jebril N.,Boden R.,Braungardt C.

Abstract

Abstract The demand for the development of bioremediation processes designed to maintain healthy environments has increased; however, evaluation of the toxicity of its products is needed. Therefore, the toxicity of the Cd-loaded beads of the bioremediation approach developed in this paper was evaluated by using in vitro human gastrointestinal simulation (BARGE method). Cd-loaded beads were obtained from adsorption experiments of Cd from artificial groundwater (AGW) and natural river water (NRW, Walkham River, England) using Ca-alginate beads containing live cells of the mutant Brevibacillus agri C15 CdR and its wild type B. agri C15, in batch flasks. The results showed that the Ca-alginate beads containing the mutant adsorped a significant concentration of Cd (1700 mmolal), related to its adsorption capacity. Cd-loaded beads had higher concentrations of Ca and Na (2030 ± 40 and 4300 ± 18 molal, respectively), related to its composition. The effects of the gastrointestinal simulation showed that Ca had the highest bioaccessible concentrations from Cd-loaded beads of all tested elements (Al, Ca Co, Cu, Fe, K Mg, Na, and Zn) from (1280 ± 13.00 molal); while some other elements were not detected at the end of the gastrointestinal system. Cd bioaccessibility was significantly lower in the Cd-loaded beads containing the mutant (0.17 and 0.14 molal in the gastric and gastrointestinal phases, respectively), compared to the wild type (0.23 and 0.19 molal, respectively). The bioaccessible fractions (BAFs) of Cd were significantly lower in the Cd-loaded beads containing the mutant at the gastric and gastrointestinal phase, with the mean of 4.85 % and 2.95 %, respectively. The low percentages of BAFs of Cd suggested that the products of the bioremediation process developed in this project might not be relevant as a human health risk.

Publisher

IOP Publishing

Subject

General Engineering

Reference33 articles.

1. Hydrogels in drug delivery: Progress and challenges;Hoare;Polymer,2008

2. Cryopreservation of virus: a novel biotechnology for long-term preservation of virus in shoot tips;Wang;Plant Methods,2018

3. Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors’;Bhujbal;Adv Drug Deliv Rev,2014

4. Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system;Bilal;Biocatal Agric Biotechnol,2019

5. Encapsulation of betacyanins and polyphenols extracted from leaves and stems of beetroot in Ca (II)-alginate beads: A structural study;Calvo;J. Food Eng,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new approach “BARGE” on Zantac® after recall;AIP Conference Proceedings;2024

2. Cadmium removal with mutant Brevibacillus Agri C15 CdR entrapped in calcium alginate gel: Multi-constituent ionic exchange;INTERNATIONAL CONFERENCE ON SCIENTIFIC RESEARCH & INNOVATION (ICSRI 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3