Evaluating novel building products through a building design-oriented LCA approach: Example of VIPs in terrace applications

Author:

Božiček D.,Košir M.,Zach J.,Novák V.,Peterková J.,Bubeník J.,Lešek A.,Jordan S.,Malovrh Rebec K.

Abstract

Abstract INTRODUCTION: The construction industry is considered conservative in adopting new products/technologies, and environmental characteristics are one of the most important features of novel solutions. In this context, our study aims to present a building design-oriented assessment of a novel building product by extending the functional unit scope and involving multiple realistic building design scenarios. The task will be performed using the example of vacuum insulation panels (VIPs), a superinsulation product that can be used in various building applications. The study will focus on terrace insulation applications, where VIPs are an attractive solution for building designers due to the possibility of barrier-free floor design. However, they lack environmental evaluation. METHOD: A life cycle assessment (LCA) analysis is performed on two hypothetical buildings located in Ljubljana (Slovenia) for the cradle-to-gate and operational energy life cycle stages (A1-A3 + B6 according to EN 15978). A whole-year dynamic thermal response simulation was executed using the Design Builder software. Five barrier-free terrace design scenarios that influence the embodied and operational carbon footprint (while maintaining the functional and architectural integrity of the building design) were examined. RESULTS: The study showed that although EPS insulation showed a smaller embodied carbon footprint on the product level, the building level analysis showed that using VIPs in terrace applications leads to favourable or comparable environmental impact. CONCLUSIONS: Building products can be evaluated on three functional unit levels: product, application and building. By extending the boundaries from the product/application level to the entire building level, the study provides an example of a building design-oriented approach to LCA. The complexity increases by upgrading the functional unit scope to the building level, while the results become more case-specific and less general. Ideally, a novel building product should show environmental superiority on all three levels. However, as there are almost countless design possibilities in buildings, environmental superiority (or inferiority) on the product level does not necessarily indicate superiority (or inferiority) on the building level.

Publisher

IOP Publishing

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3