Adaptive Neural Fuzzy Petri Net Algorithm for Motor Fault Diagnosis

Author:

Wang Changan,Li Jiming,Zhu Xiaolin,Xu Chuannuo,Cheng Xuezhen

Abstract

Abstract This study aimed to improve the application of fuzzy Petri net to fault diagnosis of motor systems. An adaptive Neural Fuzzy Petri Network Algorithm based on the traditional Petri net theory, fuzzy theory, and neural network algorithm is proposed and applied to the diagnosis of motor faults. The transition confidence is replaced by a Gaussian function to solve the uncertainty of fault propagation. Combined with the BP neural network, fault diagnosis parameters are adaptively trained. Finally, the Neural Fuzzy Petri Net Algorithm is applied to the fault diagnosis of a three-phase asynchronous motor, considering its fault operation mechanism and fault characteristics. The results show that the algorithm can diagnose the fault of the three-phase asynchronous motor with satisfactory accuracy and adaptability.

Publisher

IOP Publishing

Subject

General Engineering

Reference21 articles.

1. Review of multiple fault diagnosis;Zhang;Control Theory & Applications,2015

2. Qualitative simulation and fuzzy knowledge based fault diagnosis of centrifugal compressor insufficient discharge;Lu;Acta Automatica Sinica.,2015

3. Review on intelligence fault diagnosis in power networks;Bian;Power System Protection and Control,2014

4. Research on probability transition method for fault petri net;Sheng;Chinese Journal of Scientific Instrument.,2014

5. Application of wavelet denoising and Hilbert transform in fault diagnosis of motor bearing;Ding;Electric Machines and Control,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3