Image Pattern Recognition in Spatial Data using Artificial Neural Network

Author:

Arif Nursida,Nursantosa Edi

Abstract

Abstract This study predicts erosion based on the image patterns as the input data by using an ANN approach. Several simulations had been carried out to get the ANN parameter combination in producing the best accuracy through trials and errors. The results show that the accuracy of artificial neural network training is not influenced by the number of channels, namely the input dataset (erosion factors) and the dimensions of the data, but it is determined by changes in the network parameters. The best combination of parameters is 2 hidden layers, learning rate 0.001, Momentum 0.9, and RMS 0.0001 with an accuracy of 98.55%

Publisher

IOP Publishing

Subject

General Engineering

Reference24 articles.

1. Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed in;Arif;IOP Conference Series: Earth and Environmental Science,2017

2. An analyze of a backpropagation neural network in the identification of critical land based on ALOS imagery in;Arif;34th Asian Conference on Remote Sensing 2013, ACRS 2013,2013

3. Investigation on land cover mapping capability of maximum likelihood classifier: A case study on North Canara, India;Shivakumar;Procedia Comput. Sci.,2018

4. Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels in mature oil palm (Elaeis guineensis) based on frond numbers: Analysis of decision tree and random forest;Amirruddin;Comput. Electron. Agric.,2020

5. Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm;Ghulam;ISPRS J. Photogramm. Remote Sens.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3