Using Artificial Neural Networks and Spectral Indices to Predict Water Availability in New Capital (IKN) and Its’ Surroundings

Author:

Arif NursidaORCID,Toersilowati Laras

Abstract

AbstractThis study aims to predict water availability in New Capital (IKN) and its surroundings using artificial neural networks and spectral indices as predictors. The study uses Sentinel-2 A imagery from the year 2022 analyzed directly from Google Earth Engine (GEE) to calculate three spectral indices, including the Land Surface Water Index (LSWI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI), and uses these indices as predictors in the artificial neural network model. The study carried out four simulations to determine the best prediction results, and the best results were obtained using ANN parameters: 2 hidden layers (HL); learning rate (LR) 0.01; momentum (M) 0.4; root mean square (RMS) 0.001 and iteration (I) 25,000 with overall accuracy (OA) 97.7% and kappa index 0.96. The results show that the percentage of water availability in the study area is high water/HW (0.51%), vegetation water/VW (20.41%), and non-water/NW (79.08%). The study concludes that artificial neural networks and spectral indices can effectively predict water availability.

Publisher

Springer Science and Business Media LLC

Reference82 articles.

1. Abdalkadhum, A. J., Salih, M. M., & Jasim, O. Z. (2021). The Correlation among land cover spectral indices and surface temperature using remote sensing techniques. IOP Conference Series: Materials Science and Engineering, 1090(1), 012024. https://doi.org/10.1088/1757-899x/1090/1/012024.

2. Acharya, T. D., Subedi, A., & Lee, D. H. (2018). Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal. Sensors (Switzerland), 18(8), 1–15. https://doi.org/10.3390/s18082580.

3. Adamowski, J., Chan, F., Prasher, H., Ozga-Zielinski, S. O., B., & Sliusarieva, A. (2012). Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research, 48(1), 1–14. https://doi.org/10.1029/2010WR009945.

4. Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052

5. Aguilar, C., Zinnert, J., Polo, M. J., & Young, D. (2012). NDVI as an indicator for changes in water availability to woody vegetation. Ecological Indicators, 23, 290–300. https://doi.org/10.1016/j.ecolind.2012.04.008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3