Turbine mode start-up simulation of a FSFC variable speed pump-turbine prototype – Part I: 1D simulation

Author:

Alligné S,Béguin A,Biner D,Münch-Alligné C,Hasmatuchi V,Hugo N,Avellan F,Dujic D,Nicolet C,

Abstract

Abstract Variable speed hydroelectric units equipped with full size frequency converter (FSFC) offer high operational flexibility enabling fast operating point transitions which increase grid regulation capacities. The XFLEX HYDRO H2020 European research project aims to demonstrate flexibility of such technology at prototype scale. The Z’Mutt pumping station, part of the Grande Dixence hydroelectric scheme located in Switzerland, is one of the demonstrators focused on the FSFC technology with a new 5 MW reversible Francis pump-turbine which will be commissioned in 2021. This paper, divided in two parts, aims to simulate the turbine mode fast start-up sequence made possible with the use of a FSFC and to assess the unit damage by means of 1D and 3D CFD simulations. The part I of this paper presents the 1D hydraulic transient simulation results of start-up sequences of unit U5 considering both conventional fixed speed technology and variable speed technology. The time evolution of the unit’s operating point is used as input data for 3D CFD simulations of part II, aiming to assess the impeller damage. Different control strategies to use the FSFC for turbine mode start-up sequence are analysed. Advantages and limits of each strategy are discussed, and recommendation is made for the Z’Mutt prototype demonstrator.

Publisher

IOP Publishing

Subject

General Engineering

Reference9 articles.

1. Design and Dynamic Response Characteristics of 400 MW Adjustable Speed Pumped Storage Unit for Ohkawachi Power Station;Kuwabara;IEEE Transactions on Energy Conversion,1996

2. Optimized control strategies for variable speed machines;Kopf

3. Investigation of control strategies for variable speed pump-turbine units by using a simplified model of the converters;Pannatier;IEEE Transactions on Industrial Electronics,2010

4. Full size converter solutions for pumped storage plants – a promising new technology;Hell

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3