Optimization of turbine start-up sequence of a full size frequency converter variable speed pump-turbine

Author:

Schmid J,Alligné S,Biner D,Münch-Alligné C,Hugo N,Nicolet C

Abstract

AbstractThe stability of the electricity grid will be disrupted by the massive integration of new renewable energies. Hydropower plants have a major role to play in this transformation of the electricity market by increasing their operational flexibility and their ability to provide ancillary services. However, this flexibility may lead to an accelerated degradation of mechanical components. By changing the turbine operating point far from the best efficiency point or by increasing the number of transient manoeuvres such as start and stop sequences, unsteady flow phenomena, cavitation development and additional wear and tear stress the unit’s components and impact its lifetime. The present work aims to provide preliminary insight on the optimization of the start-up sequence of a 5 MW reversible Francis pump-turbine equipped with a Full Size Frequency Converter (FSFC). The goal of the optimization approaches are to determine a start-up sequence which minimizes the runner damage, the penstock fatigue and the water losses. The objective functions are evaluated by 1D hydraulic transient simulations with the SIMSEN software and which it allow to compare the relative mitigation between the conventional fixed-speed start-up and the linear variable-speed start-up equipped with a Full Size Frequency Converter.

Publisher

IOP Publishing

Subject

General Engineering

Reference15 articles.

1. Design and Dynamic Response Characteristics of 400 MW Adjustable Speed Pumped Storage Unit for Ohkawachi Power Station;Kuwabara;IEEE Transactions on Energy Conversion

2. Lifetime assessment and plant operation optimization based on geometry scan and strain gauge testing – START/STOP optimization;Löfflad,2014

3. Detection of harsh operating conditions on a Francis prototype based on in-situ non-intrusive measurements;Hasmatuchi

4. On variations in turbine runner dynamic behaviours observed within a given facility;Gagnon;IOP Conf. Ser.: Earth Environ. Sci.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3