Minimizing Power Peaking Factor of BEAVRS-based Reactor Using Polar Bear Optimization Algorithms

Author:

Amatullah Amila,Agung Alexander,Arif Agus

Abstract

Abstract Fuel loading pattern optimization is a complex problem because there are so many possibilities for combinatorial solutions, and it will take time to try it one by one. Therefore, the Polar Bear Optimization Algorithm was applied to find an optimum PWR loading pattern based on BEAVRS. The desired new fuel loading pattern is the one that has the minimum Power Peaking Factor (PPF) value without compromising the operating time. Operating time is proportional to the multiplication factor (k eff ). These parameters are usually contradictive with each other and will make it hard to find the optimum solution. The reactor was modelled with the Standard Reactor Analysis Code (SRAC) 2006. Fuel pins and fuel assemblies are modelled with the PIJ module for cell calculations. One-fourth symmetry was used with the CITATION X-Y module for core calculations. The optimization was done with 200 populations and 50 iterations. The PPF value for the selected solution should never exceed 2.0 in every burn-up step. Out of 28 solutions, the best optimal fuel loading pattern had a maximum value PPF of 1.458 and a k eff of 0.916 at day 760 of calculated time (corresponding to a cycle length of 479 days). Therefore, the maximum PPF value was 27.1% lower than the safety factor, and the same operating time as the standard loading pattern has been achieved.

Publisher

IOP Publishing

Subject

General Engineering

Reference14 articles.

1. A global review of PWR nuclear power plants;Fernández-Arias;Applied Sciences (Switzerland),2020

2. Novel genetic algorithm for loading pattern optimization based on core physics heuristics;Israeli;Annals of Nuclear Energy,2018

3. Multiobjective Core Reloading Pattern Optimization of PARR-1 Using Modified Genetic Algorithm Coupled with Monte Carlo Methods;Shaukat;Science and Technology of Nuclear Installations,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3