Multiobjective Core Reloading Pattern Optimization of PARR-1 Using Modified Genetic Algorithm Coupled with Monte Carlo Methods

Author:

Shaukat Nadeem1ORCID,Ahmad Ammar2ORCID,Mohsin Bukhtiar2ORCID,Khan Rustam2ORCID,Khan Salah Ud-Din3ORCID,Khan Shahab Ud-Din4

Affiliation:

1. Center for Mathematical Sciences (CMS), Pakistan Institute of Engineering & Applied Sciences, Nilore 45650, Islamabad, Pakistan

2. Department of Nuclear Engineering, Pakistan Institute of Engineering & Applied Sciences, Nilore 45650, Islamabad, Pakistan

3. College of Engineering, King Saud University, PO-Box 800, Riyadh 11421, Saudi Arabia

4. National Tokamak Fusion Program, Nilore 45650, Islamabad, Pakistan

Abstract

In order to maximize both the life cycle and efficiency of a reactor core, it is essential to find the optimum loading pattern. In the case of research reactors, a loading pattern can also be optimized for flux at an irradiation site. Therefore, the development of a general-use methodology for core loading optimization would be very valuable. In this paper, general-use multiobjective core reloading pattern optimization is performed using modified genetic algorithms (MGA). The developed strategy can be applied for the constrained optimization of research and power reactor cores. For an optimal reactor core reloading design strategy, an intelligent technique GA is coupled with the Monte Carlo (MC) code SuperMC developed by the FDS team in China for nuclear reactor physics calculations. An optimal loading pattern can be depicted as a configuration that has the maximum keff and maximum thermal fluxes in the core of the given fuel inventory keeping in view the safety constraints such as limitation on power peaking factor. The optimized loading patterns for Pakistan Research Reactor-1 (PARR-1) have been recommended using the implemented strategy by considering the constraint optimization, i.e., to maximize the keff or maximum thermal neutron flux while maintaining low power peaking factor. It has been observed that the developed intelligent strategy performs these tasks with a reasonable computational cost.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3