New Cases of Superflares on Slowly Rotating Solar-type Stars and Large Amplitude Superflares in G- and M-type Main Sequence Stars

Author:

Althukair A. K.ORCID,Tsiklauri D.ORCID

Abstract

Abstract In our previous work, we searched for superflares on different types of stars while focusing on G-type dwarfs using entire Kepler data to study statistical properties of the occurrence rate of superflares. Using these new data, as a by-product, we found 14 cases of superflare detection on 13 slowly rotating Sun-like stars with rotation periods of 24.5–44 days. This result supports the earlier conclusion by others that the Sun may possibly undergo a surprise superflare. Moreover, we found 12 and seven new cases of detection of exceptionally large amplitude superflares on six and four main sequence stars of G- and M-type, respectively. No large-amplitude flares were detected in A, F or K main sequence stars. Here we present preliminary analysis of these cases. The superflare detection, i.e., an estimation of flare energy, is based on a more accurate method compared to previous studies. We fit an exponential decay function to flare light curves and study the relation between e-folding decay time, τ, versus flare amplitude and flare energy. We find that for slowly rotating Sun-like stars, large values of τ correspond to small flare energies and small values of τ correspond to high flare energies considered. Similarly, τ is large for small flare amplitudes and τ is small for large amplitudes considered. However, there is no clear relation between these parameters for large amplitude superflares in the main sequence G- and M-type stars, as we could not establish clear functional dependence between the parameters via standard fitting algorithms.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3