Fast full N-body simulations of generic modified gravity: derivative coupling models

Author:

Hernández-Aguayo César,Ruan Cheng-Zong,Li Baojiu,Arnold Christian,Baugh Carlton M.,Klypin Anatoly,Prada Francisco

Abstract

Abstract We present mg-glam, a code developed for the very fast production of full N-body cosmological simulations in modified gravity (MG) models. We describe the implementation, numerical tests and first results of a large suite of cosmological simulations for two broad classes of MG models with derivative coupling terms — the Vainshtein- and Kmouflage-type models — which respectively features the Vainshtein and Kmouflage screening mechanism. Derived from the parallel particle-mesh code glam, mg-glam incorporates an efficient multigrid relaxation technique to solve the characteristic nonlinear partial differential equations of these models. For Kmouflage, we have proposed a new algorithm for the relaxation solver, and run the first simulations of the model to understand its cosmological behaviour. In a companion paper, we describe versions of this code developed for conformally-coupled MG models, including several variants of f(R) gravity, the symmetron model and coupled quintessence. Altogether, mg-glam has so far implemented the prototypes for most MG models of interest, and is broad and versatile. The code is highly optimised, with a tremendous (over two orders of magnitude) speedup when comparing its running time with earlier N-body codes, while still giving accurate predictions of the matter power spectrum and dark matter halo abundance. mg-glam is ideal for the generation of large numbers of MG simulations that can be used in the construction of mock galaxy catalogues and accurate emulators for ongoing and future galaxy surveys.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference151 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraining modified gravity with weak-lensing peaks;Monthly Notices of the Royal Astronomical Society;2024-08-15

2. An implementation of nDGP gravity in Pinocchio;Journal of Cosmology and Astroparticle Physics;2024-07-01

3. The Uchuu-glam BOSS and eBOSS LRG lightcones: exploring clustering and covariance errors;Monthly Notices of the Royal Astronomical Society;2024-06-21

4. Bayesian deep learning for cosmic volumes with modified gravity;Astronomy & Astrophysics;2024-04

5. fkPT: constraining scale-dependent modified gravity with the full-shape galaxy power spectrum;Journal of Cosmology and Astroparticle Physics;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3