Probing the galactic and extragalactic gravitational wave backgrounds with space-based interferometers

Author:

Mentasti G.ORCID,Contaldi C.R.ORCID,Peloso M.ORCID

Abstract

Abstract We employ the formalism developed in [1] and [2] to study the prospect of detecting an anisotropic Stochastic Gravitational Wave Background (SGWB) with the Laser Interferometer Space Antenna (LISA) alone, and combined with the proposed space-based interferometer Taiji. Previous analyses have been performed in the frequency domain only. Here, we study the detectability of the individual coefficients of the expansion of the SGWB in spherical harmonics, by taking into account the specific motion of the satellites. This requires the use of time-dependent response functions, which we include in our analysis to obtain an optimal estimate of the anisotropic signal. We focus on two applications. Firstly, the reconstruction of the anisotropic galactic signal without assuming any prior knowledge of its spatial distribution. We find that both LISA and LISA with Taiji cannot put tight constraints on the harmonic coefficients for realistic models of the galactic SGWB. We then focus on the discrimination between a galactic signal of known morphology but unknown overall amplitude and an isotropic extragalactic SGWB component of astrophysical origin. In this case, we find that the two surveys can confirm, at a confidence level ≳ 3σ, the existence of both the galactic and extragalactic background if both have amplitudes as predicted in standard models. We also find that, in the LISA-only case, the analysis in the frequency domain (under the assumption of a time average of data taken homogeneously across the year) provides a nearly identical determination of the two amplitudes as compared to the optimal analysis.

Publisher

IOP Publishing

Reference48 articles.

1. Prospects for detecting anisotropies and polarization of the stochastic gravitational wave background with ground-based detectors;Mentasti;JCAP,2023

2. Probing anisotropies of the Stochastic Gravitational Wave Background with LISA;LISA Cosmology Working Group Collaboration;JCAP,2022

3. Observation of Gravitational Waves from a Binary Black Hole Merger;LIGO Scientific, Virgo Collaboration;Phys. Rev. Lett.,2016

4. Advanced LIGO;LIGO Scientific Collaboration;Class. Quant. Grav.,2015

5. Advanced Virgo: a second-generation interferometric gravitational wave detector;VIRGO Collaboration;Class. Quant. Grav.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inflationary initial conditions for the cosmological gravitational wave background;Journal of Cosmology and Astroparticle Physics;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3