Abstract
Abstract
We study a No-Scale supergravity inflation model which has a non-minimal deformation of the Kähler potential and a Wess-Zumino superpotential extended by the inclusion of a Polonyi mass term. The non-minimal structure of the Kähler potential is responsible for an inflexion point that can lead to the production of gravitational waves at late stages of inflation, while the Polonyi term breaks supersymmetry at the end of inflation, generating a non-vanishing gravitino mass. After a thorough parameter space scan, we identify promising points for gravitational wave production. We then study the resulting gravitational wave energy density for this set of points, and we observe that the gravitational waves should be observable in the next generation of both space-based and ground-based interferometers. Finally, we show how the presence of the Polonyi term can be used to further boost the gravitational wave energy density, which is correlated with the gravitino mass. The code used for the scan and the numerical analysis is provided at https://gitlab.com/miguel.romao/gw-and-m32-no-scale-inflation-polonyi.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献