The primordial black holes that disappeared: connections to dark matter and MHz-GHz gravitational Waves

Author:

Gehrman Thomas C.,Shams Es Haghi Barmak,Sinha Kuver,Xu Tao

Abstract

AbstractIn the post-LIGO era, there has been a lot of focus on primordial black holes (PBHs) heavier than ∼ 1015g as potential dark matter (DM) candidates. We point out that the branch of the PBH family that disappeared — PBHs lighter than ∼ 109g that ostensibly Hawking evaporated away in the early Universe — also constitute an interesting frontier for DM physics. Hawking evaporation itself serves as a portal through which such PBHs can illuminate new physics, for example by emitting dark sector particles. Taking a simple DM scalar singlet model as a template, we compute the abundance and mass of PBHs that could have provided, by Hawking evaporation, the correct DM relic density. We consider two classes of such PBHs: those originating from curvature perturbations generated by inflation, and those originating from false vacuum collapse during a first-order phase transition. For PBHs of both origins we compute the gravitational wave (GW) signals emanating from their formation stage: from second-order effects in the case of curvature perturbations, and from sound waves in the case of phase transitions. The GW signals have peak frequencies in the MHz-GHz range typical of such light PBHs. We compute the strength of such GWs compatible with the observed DM relic density, and find that the GW signal morphology can in principle allow one to distinguish between the two PBH formation histories.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3