Gravitational lensing of Schwarzschild and charged black holes immersed in perfect fluid dark matter halo

Author:

Qiao Chen-Kai,Zhou Mi

Abstract

Abstract Dark matter and dark energy dominate the behavior of our universe. The dark matter usually forms halo structures in large number of galaxies. Properties of dark matter halo can be revealed and understood from the gravitational lensing observations. In this work, a comprehensive study on the gravitational lensing of black holes immersed in dark matter halos is presented. To effectively model the supermassive black hole in a galaxy center (which is surrounded by dark matter halo) in a simple way, we investigate the Schwarzschild black hole and charged Reissner-Nordström black hole immersed in a perfect fluid dark matter halo. In the present work, several basic quantities in gravitational lensing (the gravitational deflection angle of light, photon sphere, black hole shadow radius, gravitational lens equation and Einstein ring) are calculated and analyzed analytically and numerically. A second order analytical expansion of gravitational deflection angle is obtained in the weak deflection limit, and the full gravitational deflection angle (including all order perturbation contributions applicable to both weak and strong deflection limits) is also calculated numerically as comparisons. It enables us to analyze the perfect fluid dark matter influences on gravitational deflection angle and gravitational lensing beyond the leading order, which were not sufficiently studied in previous works. Assuming M ∼ λDM ∼ Q, our results show that dark matter can greatly influence the gravitational lensing of central black holes.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference137 articles.

1. Black holes and entropy;Bekenstein;Phys. Rev. D,1973

2. Particle Creation by Black Holes;Hawking;Commun. Math. Phys.,1975

3. Experimental black hole evaporation;Unruh;Phys. Rev. Lett.,1981

4. Holographic derivation of entanglement entropy from AdS/CFT;Ryu;Phys. Rev. Lett.,2006

5. Observation of Gravitational Waves from a Binary Black Hole Merger;LIGO Scientific, Virgo Collaboration;Phys. Rev. Lett.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3