Author:
Aragam Vikas,Paban Sonia,Rosati Robert
Abstract
Abstract
The detection of a primordial stochastic gravitational wave background has the potential to reveal unprecedented insights into the early universe, and possibly into the dynamics of inflation.
Generically, UV-complete inflationary models predict an abundance of light scalars, so any inflationary stochastic background may well be formed in a model with several interacting degrees of freedom.
The stochastic backgrounds possible from two-field inflation have been well-studied in the literature, but it is unclear how similar they are to the possibilities from many-field inflation.
In this work we study stochastic backgrounds from more-than-two field inflation for the first time, focusing on the scalar-induced background produced during the radiation era by a brief turn in three-field space.
We find an analytic expression for the enhancement in the power spectrum as a function of the turn rate and the torsion, and show that unique signatures of three-field dynamics are possible in the primordial power spectrum and gravitational wave spectrum.
We confirm our analytic results with a suite of numerical simulations and find good agreement in the shape and amplitude of the power spectra.
We also comment on the detection prospects in LISA and other future detectors.
We do not expect the moderately large growth of the inflationary perturbations necessary for detection to cause a breakdown of perturbation theory, but this must be verified on a case-by-case basis for specific microphysical models to make a definitive claim.
Subject
Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced power spectra from multi-field inflation;Journal of Cosmology and Astroparticle Physics;2024-08-01
2. One-loop infrared rescattering by enhanced scalar fluctuations during inflation;Journal of Cosmology and Astroparticle Physics;2024-04-01
3. The cosmological tree theorem;Journal of High Energy Physics;2023-12-12