Fast and effortless computation of profile likelihoods using CONNECT

Author:

Nygaard Andreas,Holm Emil Brinch,Hannestad Steen,Tram Thomas

Abstract

Abstract The frequentist method of profile likelihoods has recently received renewed attention in the field of cosmology. This is because the results of inferences based on the latter may differ from those of Bayesian inferences, either because of prior choices or because of non-Gaussianity in the likelihood function. Consequently, both methods are required for a fully nuanced analysis. However, in the last decades, cosmological parameter estimation has largely been dominated by Bayesian statistics due to the numerical complexity of constructing profile likelihoods, arising mainly from the need for a large number of gradient-free optimisations of the likelihood function. In this paper, we show how to accommodate the computational requirements of profile likelihoods using the publicly available neural network framework connect together with a novel modification of the gradient-based basin-hopping optimisation algorithm. Apart from the reduced evaluation time of the likelihood due to the neural network, we also achieve an additional speed-up of 1–2 orders of magnitude compared to profile likelihoods computed with the gradient-free method of simulated annealing, with excellent agreement between the two. This allows for the production of typical triangle plots normally associated with Bayesian marginalisation within cosmology (and previously unachievable using likelihood maximisation because of the prohibitive computational cost). We have tested the setup on three cosmological models: the ΛCDM model, an extension with varying neutrino mass, and finally a decaying cold dark matter model. Given the default precision settings in connect, we achieve a high precision in χ2 with a difference to the results obtained by class of Δχ2 ≈ 0.2 (and, importantly, without any bias in inferred parameter values) — easily good enough for profile likelihood analyses.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3