Author:
Berens Roman,Hui Lam,Sun Zimo
Abstract
Abstract
In this note, we present a synopsis of geometric symmetries for (spin 0) perturbations around (4D) black holes and de Sitter space. For black holes, we focus on static perturbations, for which the (exact) geometric symmetries have the group structure of
SO(1,3). The generators consist of three spatial rotations, and three conformal Killing vectors obeying a special melodic condition. The static perturbation solutions form a unitary (principal series) representation of the group. The recently uncovered ladder symmetries follow from this representation structure; they explain the well-known vanishing of the black hole Love numbers. For dynamical perturbations around de Sitter space, the geometric symmetries are less surprising, following from the SO(1,4) isometry. As is known, the quasinormal solutions form a non-unitary representation of the isometry group. We provide explicit expressions for the ladder operators associated with this representation. In both cases, the ladder structures help connect the boundary condition at the horizon with that at infinity (black hole) or origin (de Sitter space), and they manifest as contiguous relations of the hypergeometric solutions.
Subject
Astronomy and Astrophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献