Ladder symmetries and Love numbers of Reissner-Nordström black holes

Author:

Rai MuditORCID,Santoni LucaORCID

Abstract

Abstract It is well known that asymptotically flat black holes in general relativity have vanishing tidal Love numbers. In the case of Schwarzschild and Kerr black holes, this property has been shown to be a consequence of a hidden structure of ladder symmetries for the perturbations. In this work, we extend the ladder symmetries to non-rotating charged black holes in general relativity. As opposed to previous works in this context, we adopt a more general definition of Love numbers, including quadratic operators that mix gravitational and electromagnetic perturbations in the point-particle effective field theory. We show that the calculation of a subset of those couplings in full general relativity is affected by an ambiguity in the split between source and response, which we resolve through an analytic continuation. As a result, we derive a novel master equation that unifies scalar, electromagnetic and gravitational perturbations around Reissner-Nordström black holes. The equation is hypergeometric and can be obtained from previous formulations via nontrivial field redefinitions, which allow to systematically remove some of the singularities and make the presence of the ladder symmetries more manifest.

Publisher

Springer Science and Business Media LLC

Reference94 articles.

1. LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

2. M. Bailes et al., Gravitational-wave physics and astronomy in the 2020s and 2030s, Nature Rev. Phys. 3 (2021) 344 [INSPIRE].

3. M. Saleem et al., The science case for LIGO-India, Class. Quant. Grav. 39 (2022) 025004 [arXiv:2105.01716] [INSPIRE].

4. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].

5. D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [arXiv:1907.04833] [INSPIRE].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3