Baryogenesis, primordial black holes and MHz–GHz gravitational waves

Author:

Gehrman Thomas C.,Shams Es Haghi Barmak,Sinha Kuver,Xu Tao

Abstract

Abstract Gravitational waves (GWs) in the MHz–GHz frequency range are motivated by a host of early Universe phenomena such as oscillons, preheating, and cosmic strings. We point out that baryogenesis too serves as a motivation to probe GWs in this frequency range. The connection is through primordial black holes (PBHs): on the one hand, PBHs induce baryogenesis by Hawking evaporating into a species that has baryon number and CP violating decays; on the other, PBHs induce GWs through second order effects when the scalar fluctuations responsible for their formation re-enter the horizon. We describe the interplay of the parameters responsible for successful baryogenesis on the plane of the strain and frequency of the induced GWs, being careful to delineate regimes where PBH domination or washout effects occur. We provide semi-analytic scalings of the GW strain with the baryon number to entropy ratio and other parameters important for baryogenesis. Along the way, we sketch a solution to the dark matter-baryogenesis coincidence problem with two populations of PBHs, which leads to a double-peaked GW signal. Our results underscore the importance of probing the ultra high frequency GW frontier.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravitational wave signatures of cogenesis from a burdened PBH;Journal of Cosmology and Astroparticle Physics;2024-09-01

2. Leptogenesis, primordial gravitational waves, and PBH-induced reheating;Physical Review D;2024-08-26

3. Cavity detection of gravitational waves: Where do we stand?;Physical Review D;2024-07-16

4. Spinning primordial black holes from first order phase transition;Journal of High Energy Physics;2024-07-02

5. Realisation of the ultra-slow roll phase in Galileon inflation and PBH overproduction;Journal of Cosmology and Astroparticle Physics;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3