Questions on calculation of primordial power spectrum with large spikes: the resonance model case

Author:

Inomata Keisuke,Braglia Matteo,Chen Xingang

Abstract

Abstract Inflationary models predicting a scale-dependent large amplification of the density perturbations have recently attracted a lot of attention because the amplified perturbations can seed a sizable amount of primordial black holes (PBHs) and stochastic background of gravitational waves (GWs). While the power spectra in these models are computed based on the linear equation of motion, it is not obvious whether loop corrections are negligible when such a large amplification occurs during inflation. In this paper, as a first step to discuss the loop corrections in such models, we use the in-in formalism and calculate the one-loop scalar power spectrum numerically and analytically in an illustrative model where the density perturbations are resonantly amplified due to oscillatory features in the inflaton potential. Our calculation is technically new in that the amplified perturbations are numerically taken into account in the in-in formalism for the first time. In arriving at our analytical estimates, we highlight the role that the Wronskian condition of perturbations, automatically satisfied in our model, plays in obtaining the correct estimates. In addition, the analytical estimates show that the contribution originating from the quantum nature of the perturbations in the loop can be dominant. We also discuss the necessary conditions for subdominant loop corrections in this model. We find that, for the typical parameter space leading to the 𝒪(107) amplification of the power spectrum required for a sufficient PBH production, the one-loop power spectrum dominates over the tree-level one, indicating the breakdown of the perturbation theory.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference124 articles.

1. A New Type of Isotropic Cosmological Models Without Singularity;Starobinsky;Phys. Lett. B,1980

2. First Order Phase Transition of a Vacuum and Expansion of the Universe;Sato;Mon. Not. Roy. Astron. Soc.,1981

3. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems;Guth;Phys. Rev. D,1981

4. Quantum Fluctuations and a Nonsingular Universe;Mukhanov;JETP Lett.,1981

5. The Vacuum energy and large scale structure of the universe;Mukhanov;Sov. Phys. JETP,1982

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3