Testing gravity with gravitational waves × electromagnetic probes cross-correlations

Author:

Scelfo Giulio,Berti Maria,Silvestri Alessandra,Viel Matteo

Abstract

Abstract In a General Relativistic framework, Gravitational Waves (GW) and Electromagnetic (EM) waves are expected to respond in the same way to the effects of matter perturbations between the emitter and the observer. A different behaviour might be a signature of alternative theories of gravity. In this work we study the cross-correlation of resolved GW events (from compact objects mergers detected by the Einstein Telescope, either assuming or excluding the detection of an EM counterpart) and EM signals (coming both from the Intensity Mapping of the neutral hydrogen distribution and resolved galaxies from the SKA Observatory), considering weak lensing, angular clustering and their cross term (L × C) as observable probes. Cross-correlations of these effects are expected to provide promising information on the behaviour of these two observables, hopefully shedding light on beyond GR signatures. We perform a Fisher matrix analysis with the aim of constraining the {μ 0, η 0, Σ 0} parameters, either opening or keeping fixed the background parameters {w 0, w a}. We find that, although lensing-only forecasts provide significantly unconstrained results, the combination with angular clustering and the cross-correlation of all three considered tracers (GW, IM, resolved galaxies) leads to interesting and competitive constraints. This offers a novel and alternative path to both multi-tracing opportunities for Cosmology and the Modified Gravity sector.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraining extended cosmologies with GW×LSS cross-correlations;Journal of Cosmology and Astroparticle Physics;2023-11-01

2. The observed number counts in luminosity distance space;Journal of Cosmology and Astroparticle Physics;2023-08-01

3. Cosmological Probes of Structure Growth and Tests of Gravity;Universe;2023-06-22

4. Prospects of testing late-time cosmology with weak lensing of gravitational waves and galaxy surveys;Journal of Cosmology and Astroparticle Physics;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3