Enhance primordial black hole abundance through the non-linear processes around bounce point

Author:

Chen Jie-Wen,Zhu Mian,Yan Sheng-Feng,Wang Qing-Qing,Cai Yi-Fu

Abstract

Abstract The non-singular bouncing cosmology is an alternative paradigm to inflation, wherein the background energy density vanishes at the bounce point, in the context of Einstein gravity. Therefore, the non-linear effects in the evolution of density fluctuations (δρ) may be strong in the bounce phase, which potentially provides a mechanism to enhance the abundance of primordial black holes (PBHs). This article presents a comprehensive illustration for PBH enhancement due to the bounce phase. To calculate the non-linear evolution of δρ, the Raychaudhuri equation is numerically solved here. Since the non-linear processes may lead to a non-Gaussian probability distribution function for δρ after the bounce point, the PBH abundance is calculated in a modified Press-Schechter formalism. In this case, the criterion of PBH formation is complicated, due to complicated non-linear evolutionary behavior of δρ during the bounce phase. Our results indicate that the bounce phase indeed has potential to enhance the PBH abundance sufficiently. Furthermore, the PBH abundance is applied to constrain the parameters of bounce phase, providing a complementary to the surveys of cosmic microwave background and large scale structure.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference101 articles.

1. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model;Zel'dovich;Soviet Astron,1967

2. Gravitationally collapsed objects of very low mass;Hawking;Mon. Not. Roy. Astron. Soc.,1971

3. Black holes in the early Universe;Carr;Mon. Not. Roy. Astron. Soc.,1974

4. The Black Hole Mass Distribution in the Galaxy;Özel;Astrophys. J.,2010

5. New cosmological constraints on primordial black holes;Carr;Phys. Rev. D,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3