Abstract
Abstract
We present a novel model-independent generic mechanism for primordial black hole formation within the context of non-singular matter bouncing cosmology. In particular, considering a short transition from the matter contracting phase to the Hot Big Bang expanding Universe, we find naturally enhanced curvature perturbations on very small scales which can collapse and form primordial black holes. Interestingly, the primordial black hole masses that we find can lie within the observationally unconstrained asteroid-mass window, potentially explaining the totality of dark matter. Remarkably, the enhanced curvature perturbations, collapsing to primordial black holes, can induce as well a stochastic gravitational-wave background, being potentially detectable by future experiments, in particular by SKA, PTAs, LISA and ET, hence serving as a new portal to probe the bouncing nature of the initial conditions prevailing in the early Universe.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献