Model-independent radiative symmetry breaking and gravitational waves

Author:

Salvio Alberto

Abstract

Abstract Models where symmetries are predominantly broken (and masses are then generated) through radiative corrections typically produce strong first-order phase transitions with a period of supercooling, when the temperature dropped by several orders of magnitude. Here it is shown that a model-independent description of these phenomena and the consequent production of potentially observable gravitational waves is possible in terms of few parameters (which are computable once the model is specified) if enough supercooling occurred. It is explicitly found how large the supercooling should be in terms of those parameters, in order for the model-independent description to be valid. It is also explained how to systematically improve the accuracy of such description by computing higher-order corrections in an expansion in powers of a small quantity, which is a function of the above-mentioned parameters. Furthermore, the corresponding gravitational wave spectrum is compared with the existing experimental results from the latest observing run of LIGO and VIRGO and the expected sensitivities of future gravitational wave experiments to find regions of the parameter space that are either ruled out or can lead to a future detection.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3