Author:
Albert A.,Alves S.,André M.,Ardid M.,Ardid S.,Aubert J.-J.,Aublin J.,Baret B.,Basa S.,Becherini Y.,Belhorma B.,Bendahman M.,Benfenati F.,Bertin V.,Biagi S.,Bissinger M.,Boumaaza J.,Bouta M.,Bouwhuis M.C.,Brânzaş H.,Bruijn R.,Brunner J.,Busto J.,Caiffi B.,Calvo D.,Campion S.,Capone A.,Caramete L.,Carenini F.,Carr J.,Carretero V.,Celli S.,Cerisy L.,Chabab M.,Chau T.N.,Cherkaoui El Moursli R.,Chiarusi T.,Circella M.,Coelho J.A.B.,Coleiro A.,Coniglione R.,Coyle P.,Creusot A.,Cruz A.S.M.,Díaz A.F.,De Martino B.,Distefano C.,Di Palma I.,Domi A.,Donzaud C.,Dornic D.,Drouhin D.,Eberl T.,van Eeden T.,van Eijk D.,El Hedri S.,El Khayati N.,Enzenhöfer A.,Fermani P.,Ferrara G.,Filippini F.,Fusco L.,Gagliardini S.,García J.,Gatius Oliver C.,Gay P.,Geißelbrecht N.,Glotin H.,Gozzini R.,Gracia Ruiz R.,Graf K.,Guidi C.,Haegel L.,Hallmann S.,van Haren H.,Heijboer A.J.,Hello Y.,Hernández-Rey J.J.,Hößl J.,Hofestädt J.,Huang F.,Illuminati G.,James C.W.,Jisse-Jung B.,de Jong M.,de Jong P.,Kadler M.,Kalekin O.,Katz U.,Kouchner A.,Kreykenbohm I.,Kulikovskiy V.,Lahmann R.,Lamoureux M.,Lazo A.,Lefèvre D.,Leonora E.,Levi G.,Le Stum S.,Lopez-Coto D.,Loucatos S.,Maderer L.,Manczak J.,Marcelin M.,Margiotta A.,Marinelli A.,Martínez-Mora J.A.,Migliozzi P.,Moussa A.,Muller R.,Nauta L.,Navas S.,Nezri E.,Ó Fearraigh B.,Păun A.,Păvălaş G.E.,Perrin-Terrin M.,Pestel V.,Piattelli P.,Poirè C.,Popa V.,Pradier T.,Randazzo N.,Real D.,Reck S.,Riccobene G.,Romanov A.,Sánchez-Losa A.,Saina A.,Salesa Greus F.,Samtleben D.F.E.,Sanguineti M.,Sapienza P.,Schnabel J.,Schumann J.,Schüssler F.,Seneca J.,Spurio M.,Stolarczyk Th.,Taiuti M.,Tayalati Y.,Tingay S.J.,Vallage B.,Vannoye G.,Van Elewyck V.,Viola S.,Vivolo D.,Wilms J.,Zavatarelli S.,Zegarelli A.,Zornoza J.D.,Zúñiga J.
Abstract
Abstract
Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from
almost one hundred coalescences of compact objects (black holes and neutron stars). This article
presents the results of a search performed with data from the ANTARES telescope to identify
neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo
observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is
sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV,
thanks to the inclusion of both track-like events (mainly induced by νμ
charged-current
interactions) and shower-like events (induced by other interaction types). Neutrinos are selected
if they are detected within ± 500 s from the GW merger and with a reconstructed
direction compatible with its sky localisation. No significant excess is found for any of the 80
analysed GW events, and upper limits on the neutrino emission are derived. Using the information
from the GW catalogues and assuming isotropic emission, upper limits on the total energy E
tot,ν
emitted as neutrinos of all flavours and on the ratio fν
= E
tot,ν
/E
GW between neutrino and GW emissions are also computed. Finally, a stacked
analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole
merger candidates) has been performed to constrain the typical neutrino emission within this
population, leading to the limits: E
tot,ν
< 4.0 × 1053 erg and fν
< 0.15
(respectively, E
tot,ν
< 3.2 × 10^53 erg and fν
< 0.88) for E
-2 spectrum
and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios
have also been tested.