Novel constraints on fifth forces and ultralight dark sector with asteroidal data

Author:

Tsai Yu-Dai,Wu Youjia,Vagnozzi Sunny,Visinelli Luca

Abstract

Abstract We study for the first time the possibility of probing long-range fifth forces utilizing asteroid astrometric data, via the fifth force-induced orbital precession. We examine nine Near-Earth Object (NEO) asteroids whose orbital trajectories are accurately determined via optical and radar astrometry. Focusing on a Yukawa-type potential mediated by a new gauge field (dark photon) or a baryon-coupled scalar, we estimate the sensitivity reach for the fifth force coupling strength and mediator mass in the mass range m ≃ (10-21-10-15) eV, near the “fuzzy” dark matter region. Our estimated sensitivity is comparable to leading limits from equivalence principle tests, potentially exceeding these in a specific mass range. The fifth force-induced precession increases with the orbital semi-major axis in the small m limit, motivating the study of objects further away from the Sun. We also demonstrate that precession tests are particularly strong in probing long-range forces which approximately conserve the equivalence principle. We discuss future prospects for extending our study to more than a million asteroids, including NEOs, main-belt asteroids, Hildas, and Jupiter Trojans, as well as trans-Neptunian objects and exoplanets.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solar chameleons: Novel channels;Physical Review D;2024-09-13

2. Modified gravity/entropic gravity correspondence due to graviton mass;Annals of Physics;2024-09

3. Probing ultralight isospin-violating mediators at GW170817;Journal of High Energy Physics;2024-06-14

4. Phenomenology of axionic static neutron stars with masses in the mass-gap region;Classical and Quantum Gravity;2024-03-27

5. OSIRIS-REx constraints on local dark matter and cosmic neutrino profiles;Journal of Cosmology and Astroparticle Physics;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3