Phenomenology of axionic static neutron stars with masses in the mass-gap region

Author:

Oikonomou V KORCID

Abstract

Abstract In this work we consider an axionic scalar-tensor theory of gravity and its effects on static neutron stars (NSs). The axionic theory is considered in the regime in which the axion oscillates around its potential minimum, which cosmologically occurs post-inflationary, when the Hubble rate is of the same order as the axion mass. We construct the Tolman–Oppenheimer–Volkoff equations for this axionic theory and for a spherically symmetric static spacetime and we solve these numerically using a quite robust double shooting LSODA based python integration method. Regarding the equations of state, we used nine mainstream and quite popular ones, namely, the WFF1, the SLy, the APR, the MS1, the AP3, the AP4, the ENG, the MPA1 and the MS1b, using the piecewise polytropic description for each. From the extracted data we calculate the Jordan frame masses and radii, and we confront the resulting phenomenology with five well-known NS constraints. As we demonstrate, the AP3, the ENG and the MPA1 equations of state yield phenomenologically viable results which are compatible with the constraints, with the MPA1 equation of state enjoying an elevated role among the three. The reason is that the MPA1 fits well the phenomenological constraints. A mentionable feature is the fact that all the viable phenomenologically equations of state produce maximum masses which are in the mass-gap region with M max > 2.5 M , but lower that the causal 3 solar masses limit. We also compare the NS phenomenology produced by the axionic scalar-tensor theory with the phenomenology produced by inflationary attractors scalar-tensor theories.

Funder

Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3